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Introduction

Incrementality and Sentence Prediction

I Human sentence processing is incremental (Demberg and Keller, 2008).
I Predicts upcoming words (Grabski and Scheffer, 2004).
I Assumes strongly lexicalized parsing model.

Incremental TSG Model (ITSG)

Incremental TSG Generative Process
I Arbitrarily large fragments as in TAG/TSG (Schabes, 1990; Bod et al., 2003).
I Fully connected incremental structure.
I Left-Right generative process (each step must extend the prefix).
I More constraints on the fragments (lexical anchor in first or second position).

Incremental TSG Derivations
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Incremental Derivation

Non-Incremental Derivation

Multiple Derivations
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Fragment Types

3 fragment types:

I Initial: lexical anchor in the first position (sentence initial).
I Lex-First: lexical anchor in first position (non sentence-initial).
I Sub-First: lexical anchor in second position, and a substitution site in first.

Type Fragment Horizontal Notation

Initial

S

“Terms” S@

S � “Terms” S@

Lex-First

S@

“were” VP@ S@

S � “were” VP@ S@

Sub-First

S

NP “were” VP@ S@

S � “were” VP@ S@

S

NP

NNS

“Terms”

S@

VP
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“were”

VP@

RB

“n’t”

VP@

VP
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“disclosed”
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.

“.”

Combining Operations

4 operations (+ START, STOP)

I Scan
I Backward Substitution
I Forward Substitution
I Complete

Partial Structure Operation Accepted Fragment Resulting Structure Terminated

Y

`1
lex. . . `i X a. . .

4
(backward)

X

`i+1
b. . .

Y

`1
lex. . . `i+1

b. . . a. . .

NO

Y

`1
lex. . . `i

5
(forward)

X

Y `i+1
a. . .

X

`1
lex. . . `i `i+1

a. . .

NO

Y

`1
lex. . . `n

�
(stop)

?

Y #

?

`1
lex. . . `n #

YES

Figure 3: Schemata of the three ITSG operations. All tree structures (partial structure and fragments) are represented
in a compact notation, which displays only the root nodes and the yields. The i-th words in the structure’s yield is
represented as `i, while a and b stands for any (possibly empty) sequence of words and substitution sites.

stitution sites present in its yield. In the first case,
a backward substitution (4) must take place in the
following generative step: if X is the left-most sub-
stitution site, a new fragment of type f X

lex is chosen
from the grammar and substituted into X . If the par-
tially derived structure has no substitution site (all
the nodes in its yield are lexical nodes) and it is
rooted in Y , two possible choices exist: either the
generative process terminates by means of the stop
operation (�Y ), or the generative process contin-
ues. In the latter case a forward substitution (5) is
performed: a new f Y

sub fragment is chosen from the
grammar, and the partial structure is substituted into
the left-most substitution site Y of the fragment.4

Multiple Derivations As in TSG, an ITSG may
be able to generate the same parse tree in multiple
ways: multiple incremental derivations yielding the
same tree. Figure 4 shows one such example.

Generative Capacity It is useful to clarify the dif-
ference between ITSG and the more general TSG
formalism in terms of generative capacity. Although
both types of grammar make use of the substitu-
tion operation to combine fragments, an ITSG im-
poses more constraints on (i) the type of fragments
which are allowed in the grammar (initial, lex-first,

4A stop operation can be viewed as a forward substitution
when using an artificial sub-first fragment ?�Y # (stop frag-
ment), where # is an artificial lexical node indicating the termi-
nation of the sentence. For simplicity, stop fragments are omit-
ted in Figure 2 and 4 and Y is attached to the stop symbol (�Y ).
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Figure 4: Above: an example of a set of fragments ex-
tracted from the tree in Figure 1. Below: two incremental
derivations that generate it. Colors (and lines strokes) in-
dicate which derivation fragments belong to.

and sub-first fragments), and (ii) the generative pro-
cess with which fragments are combined (incremen-
tally left to right instead of top-down). If we com-
pare a TSG and an ITSG on the same set of (ITSG-
compatible) fragments, then there are cases in which
the TSG can generate more tree structures than the
ITSG.

In the following, we provide a more formal char-
acterization of the strong and weak generative power

Probabilistic Chart Parser

Earley based (Earley, 1970; Stolcke, 1995). No cycles.

Prob. State i ∶ kX � � ● µ [↵,�,�,←]
↵ : forward probability P (`i−1

0 , i ∶ kX � � ● µ)
� : inner probability P (`i−1

k , i ∶ kX � � ● µ)
� : outer probability P (`k−1

0 , `N
i , i ∶ kX � � ● µ)

← : viterbi best previous state

Frag. Type Fragment Symbol Probability

Initial

X

`0 . . .

⇡init

f(⇡init)∑⇡′init
f(⇡′init)

Lex-First

X

`i . . .

⇡lex(X)
f(⇡lex(X))∑⇡′

lex(X) f(⇡′lex(X))

Sub-First

X

Y `i . . .

⇡sub(Y )
f(⇡sub(Y ))∑⇡′

sub(Y ) f(⇡′sub(Y ))

Chart Algorithm
Start: Propagating forwards (↵) and inners (�)

X � `0⌫
0 ∶ 0X � ●`0⌫ [↵,�,�]

↵ = Pinit(X � `0⌫)
� = Pinit(X � `0⌫)
� = �(1 ∶ 0X � `0 ● ⌫)

Scan:

i ∶ kX � � ● `iµ [↵,�,�]
i + 1 ∶ kX � �`i ● µ [↵′,�′,�′]

↵′ = ↵
�′ = �
� = �′

Backward Substitution:

i ∶ kX � � ● Y µ [↵,�,�] Y � `i⌫

i ∶ iY � ●`i⌫ [↵′,�′,�′]
↵′+ = ↵ ⋅ Plex(Y � `i⌫)
�′ = Plex(Y � `i⌫)
� not updated (done with back-completion)

Forward Substitution:

i ∶ 0Y � ⌫ ● [↵,�,�] X � Y `iµ

i ∶ 0X � Y ● `iµ [↵′,�′,�′]
↵′+ = ↵ ⋅ Psub(X � Y `iµ)
�′+ = � ⋅ Psub(X � Y `iµ)
�+ = �′ ⋅ Psub(X � Y `iµ)

Completion:

i ∶ jY � `j⌫ ● [↵,�,�] j ∶ kX � � ● Y µ [↵′,�′,�′]
i ∶ kX � �Y ● µ [↵′′,�′′,�′′]

↵′′+ = ↵′ ⋅ �
�′′+ = �′ ⋅ �
�+ = �′′ ⋅ �′
�′+ = �′′ ⋅ �′′

Stop:

N ∶ 0Y � ⌫ ● [↵ = �,�] `N = STOP

TERMINATE (Y � ⌫) [↵′,�′,�′]
↵′ = �′ = ↵ ⋅ Psub(STOP )
�′ = 1
� = Psub(STOP )

Experimental Setup

Corpus Setup
I Penn WSJ Treebank (Marcus et al., 1993).

I Removing traces and functional tags.

I Apply right binarization (Klein and Manning, 2003), with no horizontal and vertical conditioning (H0V1).

I Replace words appearing < 5 times in the train with lexical features (Petrov, 2009).

Grammar Extraction
I Use FragmentSeeker (Sangati et al., 2010).

I Remove all non valid frags (e.g., no lexical items).

I Add all one-word fragments (minSet).

I Count frag frequency in the training corpus.

Parsing
I MPD: Maximum Probable (partial) Derivation.

I MPP: Maximum Probable Parse (approximated).

I MRP: Minimum Risk Parse (Goodman, 1996).
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Evaluation

Metrics
I Standard Parsing Evaluation (full sentences).

I Incremental Parsing Evaluation: for each prefix of the input sentence we compute the parsing accuracy on the

minimal structure spanning that prefix.

I Sentence Prediction (for every prefix).
I Word prediction PRD(m): whether the m predicted words are correct.
I Word presence PRS(m): whether the m predicted words are present in the same order.
I Longest common subsequence LCS: computes the LCS between the sequence of predicted words and the words following the prefix in

the original sentence.

Other Models
I Demberg et al. (2014) [Standard Parsing]

I Schuler et al. (2010) [Standard Parsing]

I Roark (2001); Roark et al. (2009) [Standard Parsing, Incremental Parsing]

I 3-gram model using SRILM (Stolcke, 2002) [Sentence Prediction]

Results

Standard Parsing

R P F1
Demberg et al. (2014) 79.4 79.4 79.4
Schuler et al. (2010) 83.4 83.7 83.5
Roark (2001) 86.6 86.5 86.5
Roark et al. (2009) 87.7 87.5 87.6
ITSG (MPD) 81.5 83.5 82.5
ITSG (MPP) 81.6 83.6 82.6
ITSG (MRP) 82.6 85.8 84.1
ITSG Smoothing (MPD) 83.0 83.5 83.2
ITSG Smoothing (MPP) 83.2 83.6 83.4
ITSG Smoothing (MRP) 83.9 85.6 84.8

Table 1: Full-sentence parsing results for sentences in the
test set of length up to 40 words.

ing, and with a language model built using SRILM
(Stolcke, 2002) for sentence prediction. We used a
standard 3-gram model trained on the sentences of
the training set using the default setting and smooth-
ing (Kneser-Ney) provided by the SRILM pack-
age. (Higher n-gram model do not seem appropriate,
given the small size of the training corpus.) For ev-
ery prefix in the test set we compute the most prob-
able continuation predicted by the n-gram model.20

4.3 Results

Table 1 reports full-sentence parsing results for our
parser and three comparable incremental parsers
from the literature. While Roark (2001) obtains the
best results, the ITSG parser without smoothing per-
forms on a par with Schuler et al. (2010), and out-
performs Demberg et al. (2014).21 Adding smooth-
ing results in a gain of 1.2 points F-score over the
Schuler parser. When we compare the different pars-
ing objectives of the ITSG parser, MRP is the best
one, followed by MPP and MPD.

Incremental Parsing The graphs in Figure 8 com-
pare the ITSG and Roark’s parser on the incremental
parsing evaluation, when parsing sentences of length
10, 20, 30 and 40. The performance of both models
declines as the length of the prefix increases, with
Roark’s parser outperforming the ITSG parser on
average, although the ITSG parser seems more com-

20We used a modified version of a script by Nathaniel Smith
available at https://github.com/njsmith/pysrilm.

21Note that the scores reported by Demberg et al. (2014) are
for TAG structures, not for the original Penn Treebank trees.
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Figure 8: Partial parsing results for sentences of length
10, 20, 30, and 40 (from upper left to lower right).

petitive when parsing prefixes for longer (and there-
fore more difficult) sentences.

Sentence Prediction Table 2 compares the sen-
tence prediction results of the ITSG and the lan-
guage model (SRILM). The latter is outperforming
the former when predicting the next word of a pre-
fix, i.e. PRD(1), whereas ITSG is better than the lan-
guage model at predicting a single future word, i.e.
PRS(1). When more than one (consecutive) word
is considered, the SRILM model exhibits a slightly
better recall while ITSG achieves a large gain in pre-
cision. This illustrates the complementary nature of
the two models: while the language model is better
at predicting the next word, the ITSG predicts future
words (rarely adjacent to the prefix) with high con-
fidence (89.4% LCS precision). However, it makes
predictions for only a small number of words (5.9%
LCS recall). Examples of sentence predictions can
be found in Table 3.

5 Related Work

To the best of our knowledge, there are no other in-
cremental TSG parsers in the literature. The parser
of Demberg et al. (2014) is closely related, but uses
tree-adjoining grammar, which includes both sub-
stitution and adjunction. That parser makes predic-
tions, but only for upcoming structure, not for up-
coming words, and thus cannot be used directly
for sentence prediction. The incremental parser of
Roark (2001) uses a top-down algorithm and works

Incremental Parsing
R P F1

Demberg et al. (2014) 79.4 79.4 79.4
Schuler et al. (2010) 83.4 83.7 83.5
Roark (2001) 86.6 86.5 86.5
Roark et al. (2009) 87.7 87.5 87.6
ITSG (MPD) 81.5 83.5 82.5
ITSG (MPP) 81.6 83.6 82.6
ITSG (MRP) 82.6 85.8 84.1
ITSG Smoothing (MPD) 83.0 83.5 83.2
ITSG Smoothing (MPP) 83.2 83.6 83.4
ITSG Smoothing (MRP) 83.9 85.6 84.8

Table 1: Full-sentence parsing results for sentences in the
test set of length up to 40 words.

ing, and with a language model built using SRILM
(Stolcke, 2002) for sentence prediction. We used a
standard 3-gram model trained on the sentences of
the training set using the default setting and smooth-
ing (Kneser-Ney) provided by the SRILM pack-
age. (Higher n-gram model do not seem appropriate,
given the small size of the training corpus.) For ev-
ery prefix in the test set we compute the most prob-
able continuation predicted by the n-gram model.20

4.3 Results

Table 1 reports full-sentence parsing results for our
parser and three comparable incremental parsers
from the literature. While Roark (2001) obtains the
best results, the ITSG parser without smoothing per-
forms on a par with Schuler et al. (2010), and out-
performs Demberg et al. (2014).21 Adding smooth-
ing results in a gain of 1.2 points F-score over the
Schuler parser. When we compare the different pars-
ing objectives of the ITSG parser, MRP is the best
one, followed by MPP and MPD.

Incremental Parsing The graphs in Figure 8 com-
pare the ITSG and Roark’s parser on the incremental
parsing evaluation, when parsing sentences of length
10, 20, 30 and 40. The performance of both models
declines as the length of the prefix increases, with
Roark’s parser outperforming the ITSG parser on
average, although the ITSG parser seems more com-

20We used a modified version of a script by Nathaniel Smith
available at https://github.com/njsmith/pysrilm.

21Note that the scores reported by Demberg et al. (2014) are
for TAG structures, not for the original Penn Treebank trees.
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Figure 8: Partial parsing results for sentences of length
10, 20, 30, and 40 (from upper left to lower right).

petitive when parsing prefixes for longer (and there-
fore more difficult) sentences.

Sentence Prediction Table 2 compares the sen-
tence prediction results of the ITSG and the lan-
guage model (SRILM). The latter is outperforming
the former when predicting the next word of a pre-
fix, i.e. PRD(1), whereas ITSG is better than the lan-
guage model at predicting a single future word, i.e.
PRS(1). When more than one (consecutive) word
is considered, the SRILM model exhibits a slightly
better recall while ITSG achieves a large gain in pre-
cision. This illustrates the complementary nature of
the two models: while the language model is better
at predicting the next word, the ITSG predicts future
words (rarely adjacent to the prefix) with high con-
fidence (89.4% LCS precision). However, it makes
predictions for only a small number of words (5.9%
LCS recall). Examples of sentence predictions can
be found in Table 3.

5 Related Work

To the best of our knowledge, there are no other in-
cremental TSG parsers in the literature. The parser
of Demberg et al. (2014) is closely related, but uses
tree-adjoining grammar, which includes both sub-
stitution and adjunction. That parser makes predic-
tions, but only for upcoming structure, not for up-
coming words, and thus cannot be used directly
for sentence prediction. The incremental parser of
Roark (2001) uses a top-down algorithm and works

Sentence Prediction

ITSG 3-gram LM (SRILM)
Correct R P Correct R P

PRD(1) 4,637 8.7 12.5 11,430 21.5 21.6
PRD(2) 864 1.7 13.9 2,686 5.3 5.7
PRD(3) 414 0.9 20.9 911 1.9 2.1
PRD(4) 236 0.5 23.4 387 0.8 1.0
PRS(1) 34,831 65.4 93.9 21,954 41.2 41.5
PRS(2) 4,062 8.0 65.3 5,726 11.3 12.2
PRS(3) 1,066 2.2 53.7 1,636 3.4 3.8
PRS(4) 541 1.2 53.7 654 1.4 1.7
LCS 44,454 5.9 89.4 92,587 12.2 18.4

ITSG SRILM
Correct R P Correct R P

PRD(1) 4,637 8.7 12.5 11,430 21.5 21.6
PRD(2) 864 1.7 13.9 2,686 5.3 5.7
PRD(3) 414 0.9 20.9 911 1.9 2.1
PRD(4) 236 0.5 23.4 387 0.8 1.0
PRS(1) 34,831 65.4 93.9 21,954 41.2 41.5
PRS(2) 4,062 8.0 65.3 5,726 11.3 12.2
PRS(3) 1,066 2.2 53.7 1,636 3.4 3.8
PRS(4) 541 1.2 53.7 654 1.4 1.7
LCS 44,454 5.9 89.4 92,587 12.2 18.4

Table 2: Sentence prediction results.

Prefix Shares of UAL , the parent PRD(3) PRS(3)
ITSG company of United Airlines , � �
SRILM company , which is the � �
Goldstd of United Airlines , were extremely active all day

Friday .
Prefix PSE said it expects to report earnings of $ 1.3

million to $ 1.7 million , or 14
ITSG cents a share , � +
SRILM % to $ UNK � �
Goldstd cents to 18 cents a share .

Table 3: Examples comparing sentence predictions for
ITSG and SRILM (UNK: unknown word).

on the basis of context-free rules. These are aug-
mented with a large number of non-local fea-
tures (e.g., grandparent categories). Our approach
avoids the need for such additional features, as
TSG fragments naturally contain non-local informa-
tion. Roark’s parser outperforms ours in both full-
sentence and incremental F-score (see Section 4),
but cannot be used for sentence prediction straight-
forwardly: to obtain a prediction for the next word,
we would need to compute an argmax over the
whole vocabulary, then iterate this for each word af-
ter that (the same is true for the parsers of Schuler
et al., 2010 and Demberg et al., 2014). Most in-
cremental dependency parsers use a discriminative
model over parse actions (Nivre, 2007), and there-
fore cannot predict upcoming words either (but see
Huang and Sagae 2010).

Turning to the literature on sentence prediction,
we note that ours is the first attempt to use a parser
for this task. Existing approaches either use n-gram
models (Eng and Eisner, 2004; Bickel et al., 2005) or
a retrieval approach in which the best matching sen-
tence is identified from a sentence collection given a

set of features (Grabski and Scheffer, 2004). There
is also work combining n-gram models with lexical
semantics (Li and Hirst, 2005) or part-of-speech in-
formation (Fazly and Hirst, 2003).

In the language modeling literature, more sophis-
ticated models than simple n-gram models have
been developed in the past few years, and these
could potentially improve sentence prediction. Ex-
amples include syntactic language models which
have applied successfully for speech recognition
(Chelba and Jelinek, 2000; Xu et al., 2002) and ma-
chine translation (Schwartz et al., 2011; Tan et al.,
2011), as well as discriminative language models
(Mikolov et al., 2010; Roark et al., 2007). Future
work should evaluate these approaches against the
ITSG model proposed here.

6 Conclusions

We have presented the first incremental parser for
tree substitution grammar. Incrementality is moti-
vated by psycholinguistic findings, and by the need
for real-time interpretation in NLP. We have shown
that our parser performs competitively on both full
sentence and sentence prefix F-score. We also intro-
duced sentence prediction as a new way of evaluat-
ing incremental parsers, and demonstrated that our
parser outperforms an n-gram model in predicting
more than one upcoming word.

The performance of our approach is likely to im-
prove by implementing better binarization and more
advanced smoothing. Also, our model currently con-
tains no conditioning on lexical information, which
is also likely to yield a performance gain. Finally,
future work could involve replacing the relative fre-
quency estimator that we use with more sophisti-
cated estimation schemes.
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Conclusions

I First incremental TSG parser.
I Competitive results on both full sentence and sentence prefix F-score.
I Outperforms standard n-gram LM in predicting more than one upcoming word.
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