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Abstract

According to the embodied approach to cognition, perception
and action are tightly intertwined, as perception is for action
and is guided by action. To better understand what this view
implies behaviorally, we studied how active movement and in-
tentionality during perceptual exploration affect perceptual ac-
curacy. Participants explored two-dimensional objects using
a sensory substitution device, then reported their object size
estimates. We manipulated 1) their control over exploratory
movements as being either Active (control present) or Passive
(control absent) and 2) their knowledge of the task goals, be-
ing either Specific (task-focused) or Generic. We found no dif-
ference between the Active and Passive conditions but signif-
icantly higher perceptual accuracy in Specific Intention trials
compared to Generic Intention ones. These results clarify the
nature of active perception and contribute to the growing body
of evidence that higher level cognitive goals shape how we dy-
namically sample even low level sensory information from the
world.
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Introduction
Research in embodied cognitive science has emphasized that
perception is an active process integrated with an agent’s
goals and actions (Gibson, 1979; Held & Hein, 1963; Parr
& Friston, 2017), a part of the sensorimotor loop (O’Regan
& Noë, 2001) rather than a passive first step in adaptive be-
havior. The specific implications of this idea, however, have
yet to be unequivocally demonstrated.

The most frequently explored aspect of active perception
is the involvement of motor activity, or movement, in var-
ious perceptual tasks. Studies of touch perception, for in-
stance, compared the accuracy of shape recognition between
conditions in which participants could move their hand over
the stimuli (active condition) to those in which their hand
was moved over the stimulus (passive condition; Heller et
al. 1991) and to those in which they held their hand in place
and the stimulus was moved over it (static condition; Heller
1986). The results from such tactile perception studies so far
are contradictory. While there are many that find superior-
ity of active condition in terms of higher perceptual accuracy
(Austin & Sleight, 1952; Heller, 1989; Heller et al., 1990;
Loomis, 1985), there are also studies in which passive condi-
tion seems superior (Heller & Boyd, 1984; Heller et al., 1991;
Magee & Kennedy, 1980) or in which there is no difference
between the two (Lederman, 1981; Loo et al., 1983).

In addition to merely demonstrating action effects, there
is also a question of when action is more crucial for percep-
tual function—for instance, to what extent does action matter
in perceptual learning versus when well established sensori-
motor skills are being exercised? This has traditionally been
explored with perceptual interfaces called sensory substitu-
tion devices (SSDs). In such devices, one type of sensory
information (e.g., spatial proximity or sound intensity) is de-
livered through another sense (e.g., vibrations on the skin).
Some studies showed that active control over SSDs is essen-
tial for users to learn how to perceive with them (Bach-y-Rita
et al., 1969) but contradictory results also exist (Dı́az et al.,
2012; Froese & Ortiz-Garin, 2020).

The inconsistency of findings could be explained through
various means. First, we could do a bottom-up analysis of
the conditions in which active or passive perception is better
based on particular tasks or stimuli used in them (Symmons,
2004). However, this would not explain why such tasks or
stimuli should favor a certain mode of exploration. Second,
we could examine whether the sensorimotor loop in both con-
ditions is actually sufficiently matched since if not, then any
difference in perception might be attributable to other factors.
For instance, static conditions may break the sensorimotor
loop rather than merely removing motor activation. Finally,
there is also a possibility that perception is never truly “pas-
sive” even if the movement itself is not driven by an agent, be-
cause the relevant notion of activity is a higher-level one. On
such a view, perception is active when it involves exploration
in the service of some goal or intention, when it is aimed at
detecting task-relevant features of the environment, and when
the specifics of that exploration are tuned to the goal and in-
formation state of the agent (Bajcsy et al., 2018; Bermejo et
al., 2020; Mossio & Taraborelli, 2008). In this broader sense,
purposiveness, relevance and attunement could be realized
covertly by, e.g., attention modulation, even in situations in
which the agent cannot control the motor apparatus or senses
it entirely statically (Myin, 2016; Prescott et al., 2011).

The effects of intention on perceptual exploration have
been investigated in a number of studies (Lederman &
Klatzky, 1987). For example, saccade movement patterns
have been shown to change depending on the goal of the ob-
server (Yarbus, 1967). Moreover, Arzamarski et al. (2010)
have demonstrated that a change of intention leads to a
change in the exploration pattern and a shift of attention in dy-



namic touch (touch combined with active manipulation). In-
tention to perceive particular object features has been shown
to affect even such implicit and “passive” movement features
as postural sway (Palatinus et al., 2014). Given this evidence,
it is plausible that static or passive conditions are detrimental
to perceptual performance not simply due to the lack of motor
activity involved but rather because this lack is often tied to
exploration patterns not sufficiently attuned to the perceptual
goals of the particular agent in particular circumstances. Con-
versely, an adequate exploration pattern can be good enough
even in seemingly passive conditions, especially if the agent
can attend to relevant features of the task at hand.

Our study strives to make two contributions to this discus-
sion. First, we developed and implemented a novel experi-
mental interface for comparing active and passive spatial per-
ception in a way that makes the process of sensation in both
modalities as similar as possible, to result in comparable sen-
sorimotor loops. Second, we jointly examined both aspects of
activity (i.e., movement and intentionality) by manipulating
1) the presence or absence of volitional control subjects had
over their own movements and 2) the presence or absence of
specific intentions when subjects perceived a certain feature
of the perceptual stimuli. We reasoned that exploration under
a specific intention would lead to a movement pattern better
suited to accomplishing the assigned task, thereby leading to
better perceptual performance. We also predicted that this ef-
fect would hold more strongly for passive participants.

The task we chose was for subjects to use a novel SSD
designed by our laboratory, to perceive and estimate object
sizes. Sensory substitution was chosen over established sen-
sory modalities to minimize the effect of learned sensorimo-
tor correlations on the differences between conditions of in-
terest. Our hypotheses were as follows:

1. Actively moving (Active Condition) to perceive will lead
to more accurate object size estimation than being moved
passively (Passive Condition).

2. Having a precise goal during one’s perceptual exploration
(Specific Intention) will lead to more accurate object size
estimation than exploring without a specific goal (Generic
Intention).

3. There will be an interaction effect between the Condition
and Intention manipulations.

Methods
Participants
Twenty-seven participants from the University participant
pool took part in this study. One participant was excluded
from the analysis due to aborted recording session. The re-
maining participants (15 female, 10 male, 1 non-binary) were
all right-handed, had normal or corrected-to-normal vision,
and were aged between 24 and 55 years (mean age 32).
Each experimental session took a maximum of 90 minutes
and participants were paid ¥1500 for their involvement. The

study was approved by the Okinawa Institute of Science and
Technology Graduate University Human Subjects Research
Review Committee (HSR-2020-019-2) and written informed
consent was obtained from each participant.

Participants were semi-randomly assigned to either the Ac-
tive or Passive Condition group and matched as best as pos-
sible on their arm length to ensure anatomical compatibility
between the participants in each pair.

Apparatus and Materials
Enactive Torch Sensory substitution device used in this
study was Enactive Torch (ET; v.5.4). This tool is composed
of a LiDAR distance sensor, a haptic feedback motor and an
onboard Arduino controller that translates distance between
the Torch and the first-encountered surface into vibration. In
this experiment the ET was set to produce a sine wave hap-
tic output with a constant frequency of 155 Hz whenever an
object placed within 80 cm distance was encountered. That
is, in the context of the present task setup (see Figure 1), the
mode of operation was binary: vibration when the ET was in
front of the stimulus and no vibration when pointing beyond
the stimulus boundaries. Haptic output was applied via an ex-
ternal motor attached to participant’s hand (specifically, their
outer thenar webspace) using a soft Velcro strap.

Figure 1: Experimental setup for all trials in the Active and
Passive Conditions, with the TA-ET interface on the left.

Robot arm To implement Active and Passive exploration
conditions, a robotic arm Torobo Arm (TA; Tokyo Robotics)
was used. In the current study, only 2 out of 7 available joints
were unlocked, resulting in the movement possibility in only
2 dimensions. TA can operate in two modalities: (1) external
force mode, in which a human operator controls the move-
ment of the arm while trajectory data (joint positions and
angular velocities) are being saved – implementing our Ac-
tive Condition, and (2) trajectory mode, in which the arm can
play back a given trajectory from saved data (Passive Condi-
tion, from the participant perspective). In this experimental
setup, a custom made shelf and handle was attached to the
arm. Participants had their arm resting on the shelf, grasped
the handle and moved the robot (AC) or were moved by it
(PC) while exploring the objects placed in front of them by
the experimenter. The ET was inserted into a special slot in
the handle and delivered corresponding vibrations.



Stimuli Six rectangles made of white acrylic material were
used. The relevant object sizes, that is, the sizes which partic-
ipants were asked to estimate in every trial were between 10
and 35 cm in increments of 5 cm. The objects were designed
such that 1) their two sides had different length and 2) the
relevant dimension was shorter or longer in half of the cases.
Specifically, the sizes were as follows (the relevant dimension
is stated first): 10x15, 15x25, 20x35, 25x10, 30x20, 35x30.

Additional signals Physiological data were collected at
1000 Hz frequency using the Brain Products recording sys-
tem (BrainAmp, Brain Products GmbH, Gilching, Germany)
composed of BrainAmp ExG MR amplifier, BrainVision
Recorder software and three types of sensors. First, Brain
Products 3D Acceleration Sensor was attached to the Torobo
arm’s end point to ensure accurate and high-frequency mon-
itoring of the robot movement and enable a precise check
of the equivalence of motion trajectories across two condi-
tions. Furthermore, five surface electrodes (Vitrode F dis-
posable electrodes by Nihon Kohden) were applied to par-
ticipants’ skin after it has been rubbed with alcohol. Two
electrodes were placed on the biceps brachii muscle follow-
ing the SENIAM guidelines1 and a ground electrode on the
left clavicle. The EMG activity analysis was done to ensure
that Passive Condition participants were indeed passive, i.e.,
not surreptitiously activating their muscle trying to follow the
robot movement. Two further electrodes were used to collect
ECG data to explore the possible differences in physiological
activity between two conditions – not reported here.

Procedure

After arriving to the lab and giving their informed consent,
participants were asked to perform a short Enactive Torch fa-
miliarization task that consisted in a custom-built whack-a-
mole game. The data from this task was not analyzed. Next,
participants were seated at the main experimental interface
and fitted with surface electrodes. To become comfortable
with a complete Torobo Arm - Enactive Torch (TA-ET) in-
terface, participants performed an additional familiarization
task, in which they were asked to explore a shape placed
in front of them (with visual feedback) and then identify 2
different shapes (without visual feedback). Both Active and
Passive Condition participants performed this part of the ex-
periment actively. Finally, we recorded 2 minutes of baseline
activity in a resting state with eyes closed.

In the main task, participants were asked to estimate sizes
of rectangles hidden behind the curtain, using the TA-ET in-
terface. There were a total of 3 practice and 72 experimental
trials. Trial orders were randomly generated prior to the ex-
periment and were identical for active and passive participant
within each matched pair. Experimental interface was pro-
grammed using Matlab Psychtoolbox-3 (Kleiner et al., 2007).

On each trial, the experimenter placed the stimuli on the
stand in front of the TA-ET interface with the relevant size

1http://seniam.org/bicepsbrachii.html

presented in either horizontal or vertical orientation. Par-
ticipants were first given a trial instruction, which could be
of three possible types: Generic Intention (“Explore the ob-
ject”), Specific Intention of Width (“Perceive object width”)
or Specific Intention of Height (“Perceive object height”).
They then had 10 seconds to perceptually explore the objects.
Active participants were free to move the robot arm as they
wanted and resulting trajectories were recorded. Passive par-
ticipants were asked to relax their arm and were moved by the
robot by replaying the trajectory of the matched active par-
ticipant. After the exploration period, the robot returned to
the starting position and participants were asked to estimate
a particular object Dimension (Width or Height) by drawing
a line on a touch screen that corresponded to their estimated
length, using their left (non-dominant) hand.2 Participants’
estimated object size was computed as the Euclidean distance
between the initial and final drawing points in xy-coordinates.

Data preprocessing
Accelerometer and EMG recording Acceleration data
(recorded in units of g forces) was bandpass filtered at 0.2-20
Hz with a 5th-order Butterworth filter and smoothed with a
5th-order Savitzky-Golay filter with a window length of 250
data points. EMG signal was filtered at 20-350 Hz with a
4th-order Butterworth filter, at 60 Hz (and its multiples) with
a notch filter, detrended and rectified. EMG activity was ob-
tained by (1) applying a Teager–Kaiser (TK) transformation
and computing a linear envelope, (2) normalizing the enve-
lope by dividing by maximum value in the whole experimen-
tal session (familiarization task for Passive participants). Fi-
nally, the data was epoched into resting baseline and trials.
We decided not to exclude passive trials based on muscle ac-
tivity level (as it would introduce an exclusion principle that
varies between conditions) but we analyzed its distribution
across conditions and its effect on performance level.

Movement trajectory clustering In order to check
whether intention manipulation led to distinct movement pat-
terns, recorded trajectories were clustered automatically us-
ing a heuristic procedure. For each trial, we classified each
movement segment (vector between positions in two sub-
sequent timestamps) based on its direction: “horizontal”
({0◦,180◦}± 5◦) or “vertical” ({90◦,270◦}± 5◦). Then, we
computed the proportion of each direction within the total
number of segments and assigned category of “horizontal”
or “vertical” when these labels were present over 75% of the
time. Otherwise, a “mixed” category was assigned.

Results
We removed trials based on raw response data abnormalities
and not based on response accuracy. Specifically, trials were
removed in which the response was not a straight line (10 tri-
als), when indicated length was 2 MAD below the sample me-
dian (26), when last response velocity was not 0 (3), response

2The dominant hand was attached to the TA-ET interface with a
soft Velcro strap and could not be easily used to provide responses.



(a) Robot trajectory (b) Robot acceleration

Figure 2: Robot arm movement in Active and Passive Condi-
tion.

(a) Movement trajectories. (b) Cluster distribution.

Figure 3: Movement trajectory examples and cluster distribu-
tion by Intention type.

velocity profile was markedly different from other velocities
in the sample (based on manual inspection, 2). This resulted
in the removal of 2% of the data in total.

First, we checked our experimental manipulations. Figure
2a shows an example trajectory for a particular representa-
tive trial while Figure 2b acceleration data for this trial in
Active and Passive Conditions. As can be seen, ignoring a
small amount of noise, the acceleration profile in the two con-
ditions looks very aligned, attesting to the similiarity of the
sensori-motor pattern experienced by active and passive par-
ticipants within each pair. Figure 3a shows movement trajec-
tories plotted separately for different automatically assigned
cluster types and Figure 3b shows a distribution of trajectory
clusters for the whole sample based on trial instruction. It
appears that, indeed, intention manipulation led to different
types of trajectories and the pattern is consistent with intu-
itive predictions: knowing that the task is to estimate the
object’s width or height produced trajectories that explored
mostly one of these two dimensions (horizontal and vertical).
On the other hand, Generic Intention led participants to move
in both dimensions.

Estimation accuracy
In order to analyze size estimation accuracy we computed two
measures from raw length data. Both measures were chosen
over a more direct measure of accuracy such as absolute size
error to account for the fact that participants were not given
any reference for how the vibration extent perceived via the
ET corresponds to actual object size. That is, since the vibra-
tion extent depends both on the object size and its distance

to the ET, different participants could have assumed a differ-
ent correspondence scale. To eliminate this aspect of inter-
individual variability, not relevant to the present hypothesis,
we focused on the measures that capture the quality and pre-
cision of perceptual scale that each participant applied.

First, we looked at accuracy as Actual-Estimate Cor-
relation (AEC), which expresses how distinct the differ-
ent object sizes appeared (e.g., a correlation close to 0
would indicate that all object sizes were perceived as sim-
ilar or the answers were given randomly). Each person’s
estimated sizes were grouped by within-person independent
variables of interest (Intention and object Dimension), a
Pearson correlation coefficient was obtained between esti-
mated and actual object sizes, and Fisher transformation (z =
1
2 ln( 1+r

1−r )) was applied. Comparing resulting coefficients with
a mixed ANOVA showed a significant main effect of Inten-
tion (F(1,24) = 7.94, p < 0.01) with a large effect size (par-
tial η2 = 0.25) but no significant effects of Condition or Di-
mension and no interaction (see Fig. 4a for an illustration
omitting the Dimension variable).

Second, we examined accuracy as Percent Variable Error
(%VE), which expresses how consistently each particular size
was perceived. This measure is calculated as

%V E =

[√
∑(xi −M)2/n

M

]
∗100 (1)

where xi is the perceived size on a given trial i, M is the mean
perceived size and n is the number of trials for a given combi-
nation of within-subject variables (real Object Size, Intention,
Dimension). Again, a mixed ANOVA showed a significant
main effect of Intention (F(1,24) = 5.29, p < 0.05) with a
large effect size (partial η2 = 0.18) but no significant effects
of Condition or Dimension and no interaction (Fig. 4b).

It must be noted that there was considerable individual
variability between different pairs of participants in terms of
how Active or Passive Condition affected their perceptual ac-
curacy (Fig. 5). In particular, while for two of the pairs (pair
1 and 13), we found that passive participants exhibited signif-
icantly higher %VE (at significance threshold of p < 0.0038
corrected for multiple comparisons; t(43.10) = −3.58, p <
.001, Cohen’s d = −1.09 and t(36.12) = −3.69, p < .001,
Cohen’s d = −1.23 respectively), there were also pairs in
which the active person showed higher error (e.g., pair 6 and
8, non-significant) and pairs in which there was no difference
(e.g., pair 3 and 10). This variability likely contributed to the
lack of group-level significant effect of exploration condition.

Additional analyses
We examined EMG activity expressed as normalized Tea-
ger–Kaiser area across Active and Passive Conditions. As
can be seen from Figure 6, passive participants exhibited
lower levels of muscle activation during trials than active
participants (confirmed with the Welch two-sample t-test,
t(918.41) = 44.26, p < .001; Cohen’s d = 2.92), attesting
to the validity of our experimental setup. Furthermore, we



(a) Correlation between actual and estimated size (b) Percent variable error

Figure 4: Perceptual accuracy across conditions and intention types. Error bars represent 95% confidence intervals.

found no significant correlation between the average amount
of trial EMG activity in the passive group and their average
perceptual accuracy, measured either as AEC (rho = 0.53,
S = 172.00, p = 0.067) or %VE (rho = −0.26, S = 458.00,
p = 0.394). It is possible that a more trial-level approach
could uncover such correlations within each participant data.
However, it would require a different experimental design
that allows for a trial-level (as opposed to aggregated) mea-
sure of perceptual accuracy.

Figure 5: Difference in %VE between active and passive par-
ticipant for each pair.

Furthermore, we examined the dependence of size estimate
on the time participants spent in contact with the object and
average exploration movement velocity. Previous research
found that when estimating linear extent of two-dimensional
objects by touch, the judgments are based on movement ve-
locity and movement time across the object surface (Arm-
strong & Marks, 1999; Hollins & Goble, 1988). Time in-
formation was available equally to both groups, which could
explain a null effect of Condition. In the current setup, data
from the ET was not synchronized with robot movement data
and participants were not instructed to execute any particu-
lar movements. Therefore, we could not extract clean sweeps
across the object surface to obtain precise measures of sweep
time or velocity. However, recorded trajectories showed that

when given a Specific Intention for a particular direction, par-
ticipants did in fact move in a sweeping fashion. Therefore,
to perform our analysis, we focused on trials in which the mo-
tion trajectory was classified as unambiguously “horizontal”
or “vertical” and took total contact time in a trial (indicated
by the ET motor being switched on) as a proxy for the time
that indexes movement across the object.

We fitted a linear mixed model to predict response length
with contact time and average movement speed and included
random effects of real object size (to eliminate its trivial in-
fluence on contact time) and participant ID. The effect of
contact time was statistically significant and positive (β =
8.80, t(772) = 2.50, p = 0.013) while the effect of aver-
age movement speed was statistically significant and negative
(β = −1.24, t(772) = −6.07, p < .001). The model’s total
explanatory power was substantial (conditional R2 = 0.69)
but the part related to the fixed effects alone (marginal R2)
was small (0.07). Including an interaction term between con-
tact time and condition did not improve the fit of the model.
Therefore, we have tentative evidence that both groups of par-
ticipants could be relying on time and velocity information
but further study with more precise trajectory data is required.

Figure 6: EMG activity as normalized Teager–Kaiser area in
Active and Passive Conditions.



Discussion
We have designed a novel experimental interface that allows
for testing a variety of perceptual tasks in precisely matched
Active and Passive Conditions. Although the attempt to cre-
ate such an interface is not new (e.g., Perrotta et al., 2020;
Richardson et al., 2000), the advantage of our solution is in
its potential ability to test a variety of tasks and stimuli (size,
shape, affordances perception in 1D-3D) and its integration
with SSDs and brain and body physiological recording.

Using the TA-ET interface, we examined size estimation
accuracy as a function of exploration mode (Active vs Passive
Condition) and intention (Generic vs Specific). We found that
perceiving the object under Specific Intention conditions led
to higher accuracy, in line with our Hypothesis 2. However,
we found no difference between Active and Passive explo-
ration mode, contrary to our Hypothesis 1 and some previous
studies (Heller, 1986; Lepora et al., 2013; Smith et al., 2009)
but in line with others (Lederman, 1981, 1983; Lederman &
Klatzky, 1987). We also found no evidence for interaction
between independent variables, contrary to our Hypothesis 3.

Our findings on the significance of perceptual intention are
interesting as they highlight the interactions between higher-
level cognitive influences, such as goal-orientation, and what
is typically thought of as lower level perceptual activity. The
potential linkages seen between action-related intentionality
and perceptual quality can be explained by recent theories
of active inference, which posit that intentions, or the initial
goals of perceptual exploration, not only guide the manner
in which percepts are cognitively represented but how per-
ceptual information is dynamically sampled from the world
(Parr & Pezzulo, 2021). It may be worth further examining,
within the active inference framework – or broader embod-
ied cognitive science approach – how the specificity of in-
tentions in perceptual exploration may influence behavioral
performance, by either guiding actions such that they result
in appropriate stimulation, or by modulating attention to the
relevant input (Bermejo et al., 2020; Parr & Friston, 2019),
even when the agent is not controlling its acquisition.

Regarding the null effect of Condition, we can consider
several explanations. First, it is possible that we did not have
sufficient statistical power to find an effect for the group vari-
able, especially given the variability between pairs of partic-
ipants. This variability could stem from differences in motor
abilities required for the task: executing line drawings with
a non-dominant hand as a way of assessing object dimen-
sions. Alternatively, it could point to the diversity of percep-
tual strategies in acquiring required information. Both issues
might interact with a coarse-grained active versus passive dis-
tinction. Future studies could address these issues in a num-
ber of ways. The motor abilities could be assessed explicitly
and accounted for in the analysis or, alternatively, a response
modality could be replaced with a more discrete type (forced
choice). Perceptual strategies could be distinguished based
on a more systematic characterization of movement trajecto-
ries and related to task performance. Finally, a within-subject

design could be adopted. However, this requires careful con-
sideration of the possible confounds. Preserving an exact
match between active and passive trajectories would prevent
counter-balancing the order of conditions (as active trajecto-
ries have to be recorded first) and introduce a possible learn-
ing effect. Alternatively, passive trajectories could be gener-
ated in advance, thereby allowing for order counter-balancing
but breaking the exact match in sensorimotor patterns.

An alternative explanation for the null effect is that pas-
sive participants had sufficient information to adequately per-
form the given task, without explicit behavioural control dur-
ing the exploration phase. One source of motor informa-
tion could have derived from surreptitious muscle activation
among passive participants despite the instruction to relax
their arm. However, this possibility can be excluded based on
generally lower EMG activity in the passive group and a lack
of correlation between muscle activation and accuracy. An-
other possible source of information is task-specific variables.
Based on previous studies, it appears that movement velocity
and time are sufficient for judging linear extent (Hollins &
Goble, 1988). Since proprioception was still available to pas-
sive participants (i.e., they were not anesthetized), they could
perceive these variables and estimate size accordingly. This
possibility ties in with a more theoretical point, according to
which active perception is not exhausted by the mere pres-
ence of motor activity (Barandiaran et al., 2009). Rather, it
is perception modulated by the agent’s goals and attention to
features relevant to the task. In this case, passive participants
could still be active in this more covert aspect, since they had
the same access to their own movement and time information,
and intentional knowledge as active participants.

Additionally, we could consider Active Condition features
as a reason for the null effect. It could be that active par-
ticipants were at a disadvantage because they had a higher
cognitive load (Van Doorn et al., 2012) in having to not just
perceive but also plan and execute movements with the unfa-
miliar robot-based apparatus. Furthermore, the TA-ET inter-
face enabled movement that was rich but still more restricted
than being allowed to move completely naturally if the Enac-
tive Torch were to be held in participants’ hand and manipu-
lated directly. Further study should implement a completely
free baseline condition to assess the potential effect of the in-
terface on exploratory strategies and behavioral performance.

In future work, we plan to utilize more complex perceptual
tasks that allow subjects to display more individual variabil-
ity in exploration strategies, enhancing the specificity of their
movement patterns and thereby enhancing the active-passive
contrast. We also plan to examine additional indices of per-
ceptual performance, such as response confidence or the ex-
periential quality of perception with an SSD device, i.e., the
extent to which the current distance-to-touch device enables
vision-like capacity. Finally, we could investigate the rele-
vance of Active vs. Passive exploration in the context of per-
ceptual learning in novel modalities.
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