A generative re-ranking model for dependency parsing

Federico Sangati, Willem Zuidema and Rens Bod

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

University of Amsterdam

November 9, 2009

Discriminative Models

- Parsing as a classification task.
- Transition-based parsers. (Nivre and Hall , 2005)
- Graph-based parsers. (McDonald, 2006)
- STATE-OF-THE-ART! (Buchholz et al., 2006; Nivre et al., 2007)

Probabilistic Generative Models

- Define probabilities over structures. (Eisner, 1996)
- Perform more poorly... although not much represented in the last evaluation challenges.
- Very important for many NLP tasks (SR, MT, NLG, ...): need probabilities.

The idea

Is there a principled way of combining the two?

- Discriminative model provides the k-best candidates.
- Generative model computes the prob. of each candidate.
- Selects the one with max. probability (re-ranking).
- Generative model trained on the training corpus bus NOT on the output of the discriminative model.

Motivation

- Implement and compare different generative models...
- without implementing different parsers (we actually don't need any parser).
- 'Parser simulator'^a methodology.

^aReut Tsarfaty terminology

Decomposition

Reverse the process: we can decompose any given structure into events and corresponding conditioning contexts.

Example

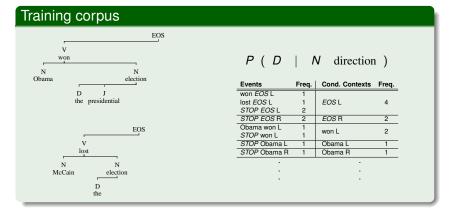
A generative model chooses each dependent D of a node N conditioned on N and their relative position (left, right).

$$P$$
 ($D \mid N$ direction)

Event : D is a right dependent of N.(D N R)Conditioning context : N has a right dependent.(N R)

Decomposition

Decompose each dependency structure in the training corpus, and keep track of the frequency of each event and conditioning context.



Federico Sangati, Willem Zuidema and Rens Bod

A generative re-ranking model for dependency parsing

Re-ranking phase

Decomposition

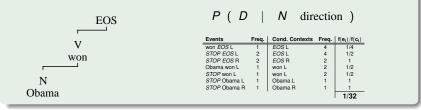
A given candidate structure can be decomposed into:

- events (*e*₁, *e*₂, ..., *e*_n)
- conditioning contexts (c_1, c_2, \ldots, c_n) .

The probability of the structure:

$$\prod_{i=1}^{n} \frac{f(e_i)}{f(c_i)}$$

Test structure



Federico Sangati, Willem Zuidema and Rens Bod A generative re-ranking model for dependency parsing

Important

The only thing to define: how a generative model decomposed a structure into events.

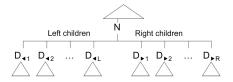
Provided

- a way of decomposing a given structure into events,
- a consistent way of representing them

both training and re-ranking phases can be **performed** identically for many different generative models.

Eisner model

Generative model inspired by the work of Eisner, 1996.

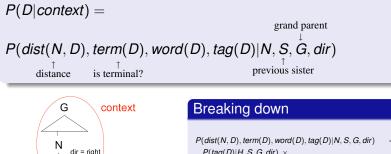


- Nodes are generated recursively in a top-down manner.
- Left and right children are generated as two separate
 Markov sequences of nodes, each conditioned on sibling and ancestral information (*context*).

$$P(T(N)) = \prod_{l=1}^{L} P(D_{\lhd l}) | context) \cdot P(T(D_{\lhd l})) \\ \times \prod_{r=1}^{R} P(D_{\rhd r}) | context) \cdot P(T(D_{\rhd r}))$$

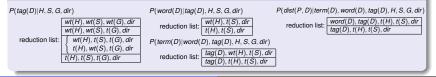
Federico Sangati, Willem Zuidema and Rens Bod A generative re-ranking model for dependency parsing

The feature space



 $\begin{array}{l} (\operatorname{dist}(N, D), \operatorname{term}(D), \operatorname{word}(D), \operatorname{tag}(D)|N, S, G, \operatorname{dir}) \\ & P(\operatorname{tag}(D)|H, S, G, \operatorname{dir}) \times \\ & P(\operatorname{word}(D)|\operatorname{tag}(D), H, S, G, \operatorname{dir}) \times \\ & P(\operatorname{term}(D)|\operatorname{word}(D), \operatorname{tag}(D), H, S, G, \operatorname{dir}) \times \\ & P(\operatorname{dist}(P, D)|\operatorname{term}(D), \operatorname{word}(D), \operatorname{tag}(D), H, S, G, \operatorname{dir}) \end{array}$

Backoff



Federico Sangati, Willem Zuidema and Rens Bod

S

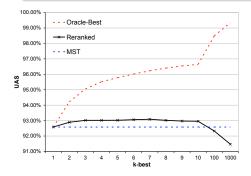
D

A generative re-ranking model for dependency parsing

Results

Unlabeled Parsing

- Corpus: Penn WSJ-40 converted to dependency structure according to Collins (1999).
- Training/Test: sec 02-21 / sec 22 (gold pos-tags)
- UAS: Unlabeled attachment score
- Discriminative model: MST parser, 2nd order (McDonald, 2006)



k-best	Oracle best	Oracle worst	Reranked
1	92.58	92.58	92.58
2	94.22	88.66	92.89
3	95.05	87.04	93.02
4	95.51	85.82	93.02
5	95.78	84.96	93.02
6	96.02	84.20	93.06
7	96.23	83.62	93.09
8	96.40	83.06	93.02
9	96.54	82.57	92.97
10	96.64	82.21	92.96
100	98.48	73.30	92.32
1000	99.34	64.86	91.47

- Combining discriminative and generative models: improvements over state-of-the-art results.
- Open question: can we come up with a better generative model?
- Efficiency:
 - MST parser: training + parse 1-best test \rightarrow 6 h.
 - Our method: training + re-ranking 100-best \rightarrow 5 min!
- 'Parser simulator': efficient framework to evaluate many different generative models.
- Explore different feature spaces.

Thank you!

http://staff.science.uva.nl/~fsangati

{f.sangati,zuidema,rens.bod}@uva.nl

