Unsupervised Methods for Head Assignments

Federico Sangati & Willem Zuidema

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION University of Amsterdam

April 3, 2009

The big picture

Bracketing (e.g., Klein & Manning'04; Seginer'07)

The big picture

POS tagging (e.g., Schütze'93, Chater'95)

The big picture

Phrase categories (e.g., Borensztajn & Zuidema'07; Reichart & Rappoport'08)

The big picture

Heads and Argument structure

Outiline

Heads in Constituency Structures

2 Assigning heads

- Rule-based methods
- LTSG
- Unsupervised Learning of Heads

3 Evaluations

- Parsing results
- Gold standard evaluations
- Dependency Parsing

4 Final Remarks

Heads in Constituency Structures

The role of heads in syntax

 Heads are a central concept in linguistic theories and NLP techniques.

Heads in Constituency Structures

The role of heads in syntax

- Heads are a central concept in linguistic theories and NLP techniques.
- In constituency structures, the term is used to mark, for any non-terminal node, the specific daughter node that fulfills a special role.

Heads in Constituency Structures

The role of heads in syntax

- Heads are a central concept in linguistic theories and NLP techniques.
- In constituency structures, the term is used to mark, for any non-terminal node, the specific daughter node that fulfills a special role.
- Exactly one head per constituent.

Heads in Constituency Structures

The role of heads in syntax

- Heads are a central concept in linguistic theories and NLP techniques.
- In constituency structures, the term is used to mark, for any non-terminal node, the specific daughter node that fulfills a special role.
- Exactly one head per constituent.

Heads in Constituency Structures

Heads in linguistic theories

Federico Sangati & Willem Zuidema Unsupervised Methods for Head Assignments

Heads in Constituency Structures

Heads in linguistic theories

Zwicky (Journal of Linguistics, 1985) lists the conditions a daughter has to fulfill in order to be the head of a construct, according to linguistic theories.

- 1 Is the constituent the semantic argument, that is, the constituent whose meaning serves as argument to some functor?
- 2 Is it the determinant of concord, that is, the constituent with which co-constituents must agree?
- 3 Is it the **morphosyntactic locus**, that is, the constituent which bears inflections marking syntactic relations between the whole construct and other syntactic units?
- 4 Is it the subcategorizand, that is, the constituent which is subcategorized with respect to its sisters?
- 5 Is it the governor, that is, the constituent which selects the morphological form of its sisters?
- 6 Is it the distributional equivalent, that is, the constituent whose distribution is identical to that of the whole construct?
- 7 Is it the **obligatory** constituent, that is, the constituent whose removal forces the whole construct to be recategorized?
- 8 Is it the ruler in dependency theory, that is, the constituent on which others depend in a dependency analysis?

Heads in Constituency Structures

Heads in NLP

 Heads are relevant for many NLP applications (parsing, MT, SRL, ...).

Heads in Constituency Structures

- Heads are relevant for many NLP applications (parsing, MT, SRL, ...).
- Heads are used because they work!

Heads in Constituency Structures

- Heads are relevant for many NLP applications (parsing, MT, SRL, ...).
- Heads are used because they work!
- Serve to have better probability distributions over the productive rules.

Heads in Constituency Structures

- Heads are relevant for many NLP applications (parsing, MT, SRL, ...).
- Heads are used because they work!
- Serve to have better probability distributions over the productive rules.
- Little attempt to have empirical (corpus based) evaluation of head assignments (only exception Chiang & Bikel 2002).

Heads in Constituency Structures

- Heads are relevant for many NLP applications (parsing, MT, SRL, ...).
- Heads are used because they work!
- Serve to have better probability distributions over the productive rules.
- Little attempt to have empirical (corpus based) evaluation of head assignments (only exception Chiang & Bikel 2002).
- Our goal is to contribute to both theory and applications, by providing algorithms for head assignments, and propose empirical evaluations.

Rule-based methods LTSG Unsupervised Learning of Heads

Hand-written rules

• Predefined rules based on the labels of parent, daughters, and their positions.

Rule-based methods LTSG Unsupervised Learning of Heads

Hand-written rules

- Predefined rules based on the labels of parent, daughters, and their positions.
- Language and corpus specific.

Rule-based methods LTSG Unsupervised Learning of Heads

Hand-written rules

- Predefined rules based on the labels of parent, daughters, and their positions.
- Language and corpus specific.
- Magerman 95
- Collins 97
- Yamada-Matsumoto 03

35 years

Rule-based methods LTSG Unsupervised Learning of Heads

Baselines

Federico Sangati & Willem Zuidema Unsupervised Methods for Head Assignments

Rule-based methods LTSG Unsupervised Learning of Heads

Baselines

• Can we do better?

Federico Sangati & Willem Zuidema Unsupervised Methods for Head Assignments

Rule-based methods LTSG Unsupervised Learning of Heads

Using heads to extract (one-anchor) Lexicalized Trees

Rule-based methods LTSG Unsupervised Learning of Heads

Using heads to extract (one-anchor) Lexicalized Trees

Rule-based methods LTSG Unsupervised Learning of Heads

Using heads to extract (one-anchor) Lexicalized Trees

Rule-based methods LTSG Unsupervised Learning of Heads

LTSGs

Lexicalized Trees + substitution operation = LTSG

Rule-based methods LTSG Unsupervised Learning of Heads

LTSGs

Lexicalized Trees + substitution operation = LTSG

• Corpus + Heads \rightarrow LTSG

Rule-based methods LTSG Unsupervised Learning of Heads

LTSGs

Lexicalized Trees + substitution operation = LTSG

• Corpus + Heads \rightarrow LTSG

• LTSGs belong to the family of TSGs (as CFGs and DOP).

Rule-based methods LTSG Unsupervised Learning of Heads

LTSGs

Lexicalized Trees + substitution operation = LTSG

- Corpus + Heads \rightarrow LTSG
- LTSGs belong to the family of TSGs (as CFGs and DOP).
- As all other TSGs, LTSGs can be defined within a stochastic model.

Rule-based methods LTSG Unsupervised Learning of Heads

Learning heads through LTSGs

• Given a corpus, there is a one to one mapping between head assignments and LTSGs we can extract.

Rule-based methods LTSG Unsupervised Learning of Heads

Learning heads through LTSGs

- Given a corpus, there is a one to one mapping between head assignments and LTSGs we can extract.
- We define an objective function over LTSGs, based on statistical information over the lexicalized trees.

Rule-based methods LTSG Unsupervised Learning of Heads

Learning heads through LTSGs

- Given a corpus, there is a one to one mapping between head assignments and LTSGs we can extract.
- We define an objective function over LTSGs, based on statistical information over the lexicalized trees.
- Choosing a head assignment = find the LTSG which optimizes the function.

Rule-based methods LTSG Unsupervised Learning of Heads

Learning heads through LTSGs

- Given a corpus, there is a one to one mapping between head assignments and LTSGs we can extract.
- We define an objective function over LTSGs, based on statistical information over the lexicalized trees.
- Choosing a head assignment = find the LTSG which optimizes the function.
- **Unsupervised**: we don't learn from any given gold head assignment.

Rule-based methods LTSG Unsupervised Learning of Heads

FAMILIARITY MAXIMIZATION

 Use elementary trees which are general enough to occur in many possible constructions.

Rule-based methods LTSG Unsupervised Learning of Heads

FAMILIARITY MAXIMIZATION

- Use elementary trees which are general enough to occur in many possible constructions.
- We start by collecting bag of all lexicalized trees from the training corpus, consistent with any head annotation.

Rule-based methods LTSG Unsupervised Learning of Heads

FAMILIARITY MAXIMIZATION

- Use elementary trees which are general enough to occur in many possible constructions.
- We start by collecting bag of all lexicalized trees from the training corpus, consistent with any head annotation.

Rule-based methods LTSG Unsupervised Learning of Heads

FAMILIARITY MAXIMIZATION

• We assign heads in a greedy TOP-DOWN manner: for each node we select the most frequent lexical tree rooted in it.

Rule-based methods LTSG Unsupervised Learning of Heads

FAMILIARITY MAXIMIZATION

• We assign heads in a greedy TOP-DOWN manner: for each node we select the most frequent lexical tree rooted in it.

Federico Sangati & Willem Zuidema Unsupervised Methods for Head Assignments

Rule-based methods LTSG Unsupervised Learning of Heads

FAMILIARITY MAXIMIZATION

• We assign heads in a greedy TOP-DOWN manner: for each node we select the more frequent lexical tree rooted in it.

Federico Sangati & Willem Zuidema

Unsupervised Methods for Head Assignments

Rule-based methods LTSG Unsupervised Learning of Heads

FAMILIARITY MAXIMIZATION

• We assign heads in a greedy TOP-DOWN manner: for each node we select the more frequent lexical tree rooted in it.

Federico Sangati & Willem Zuidema

Unsupervised Methods for Head Assignments

Rule-based methods LTSG Unsupervised Learning of Heads

Other methods and variations

• ENTROPY MINIMIZATION: reduce the uncertainty of the structures which can be associated to each word.

Rule-based methods LTSG Unsupervised Learning of Heads

Other methods and variations

- ENTROPY MINIMIZATION: reduce the uncertainty of the structures which can be associated to each word.
- EM: find the probabilistic distributions over the fragments which maximizes the likelihood of the observed data.

Rule-based methods LTSG Unsupervised Learning of Heads

Other methods and variations

- ENTROPY MINIMIZATION: reduce the uncertainty of the structures which can be associated to each word.
- EM: find the probabilistic distributions over the fragments which maximizes the likelihood of the observed data.
- Variations of the algorithms: changing the distribution over the elementary trees.
 - Spine reduction (considering only the spine)
 - POStag reduction (removing words)

Parsing results Gold standard evaluations Dependency Parsing

We evaluate the different head assignments in three different tasks.

• Constituency parsing (LTSG and Collins)

Parsing results Gold standard evaluations Dependency Parsing

Evaluations

- Constituency parsing (LTSG and Collins)
- Gold standard head-annotated corpus

Parsing results Gold standard evaluations Dependency Parsing

Evaluations

- Constituency parsing (LTSG and Collins)
- Gold standard head-annotated corpus
- Dependency parsing

Parsing results Gold standard evaluations Dependency Parsing

Evaluations

- Constituency parsing (LTSG and Collins) (English)
- Gold standard head-annotated corpus (English)
- Dependency parsing (English)

Parsing results Gold standard evaluations Dependency Parsing

Evaluations

- Constituency parsing (LTSG and Collins) (English)
- Gold standard head-annotated corpus (English) (German)
- Dependency parsing (English)

Parsing results Gold standard evaluations Dependency Parsing

- Corpus: Penn Wall Street Journal
- Training: sec 02-21 (sentences up to length 20)
- Test: sec 22 (sentences up to length 20)
- Parsing with our custom built LTSG parser

Parsing results Gold standard evaluations Dependency Parsing

- Corpus: Penn Wall Street Journal
- Training: sec 02-21 (sentences up to length 20)
- Test: sec 22 (sentences up to length 20)
- Parsing with our custom built LTSG parser

	LF	UF	T
PCFG	78.24	82.17	-

Parsing results Gold standard evaluations Dependency Parsing

- Corpus: Penn Wall Street Journal
- Training: sec 02-21 (sentences up to length 20)
- Test: sec 22 (sentences up to length 20)
- Parsing with our custom built LTSG parser

	LF	UF	T
PCFG	78.24	82.17	-
Magerman	79.12	82.72	56K
Collins97	79.05	82.71	55K
YM	79.01	82.37	56K

Parsing results Gold standard evaluations Dependency Parsing

- Corpus: Penn Wall Street Journal
- Training: sec 02-21 (sentences up to length 20)
- Test: sec 22 (sentences up to length 20)
- Parsing with our custom built LTSG parser

	LF	UF	<i>T</i>
PCFG	78.24	82.17	-
Magerman	79.12	82.72	56K
Collins97	79.05	82.71	55K
YM	79.01	82.37	56K
RANDOM	82.89	85.90	64K
Left	80.05	83.19	46K
RIGHT	70.19	75.07	51K

Parsing results Gold standard evaluations Dependency Parsing

- Corpus: Penn Wall Street Journal
- Training: sec 02-21 (sentences up to length 20)
- Test: sec 22 (sentences up to length 20)
- Parsing with our custom built LTSG parser

	LF	UF	<i>T</i>
PCFG	78.24	82.17	-
Magerman	79.12	82.72	56K
Collins97	79.05	82.71	55K
YM	79.01	82.37	56K
RANDOM	82.89	85.90	64K
Left	80.05	83.19	46K
Right	70.19	75.07	51K
FAMILIARITY	84.43	87.13	42K

Parsing results Gold standard evaluations Dependency Parsing

- Corpus: Penn Wall Street Journal
- Training: sec 02-21 (sentences up to length 20)
- Test: sec 22 (sentences up to length 20)
- Parsing with our custom built LTSG parser

	LF	UF	<i>T</i>
PCFG	78.24	82.17	-
Magerman	79.12	82.72	56K
Collins97	79.05	82.71	55K
YM	79.01	82.37	56K
RANDOM	82.89	85.90	64K
Left	80.05	83.19	46K
Right	70.19	75.07	51K
FAMILIARITY	84.43	87.13	42K

Parsing results Gold standard evaluations Dependency Parsing

Collins Parser Results

- Corpus: Penn Wall Street Journal
- Training: sec 02-21 (sentences up to length 20)
- Test: sec 22 (sentences up to length 20)
- Parsing with Bikel's implementation of Collins' parser

Parsing results Gold standard evaluations Dependency Parsing

Collins Parser Results

- Corpus: Penn Wall Street Journal
- Training: sec 02-21 (sentences up to length 20)
- Test: sec 22 (sentences up to length 20)
- Parsing with Bikel's implementation of Collins' parser

	LF	UF
Collins97	86.20	88.35
Random	84.58	86.97
RIGHT	81.62	84.41
Left	81.13	83.95
FAMILIARITY-POStags	86.27	88.32

Note: the explicit annotation of heads in the training corpus interfears with some features of the parser.

Parsing results Gold standard evaluations Dependency Parsing

- Number of sentences: 700
- Discarded (multiple heads) in Parc: 8.5 %

Parsing results Gold standard evaluations Dependency Parsing

- Number of sentences: 700
- Discarded (multiple heads) in Parc: 8.5 %

	% correct
Yamada-Matsumoto	85.33
Collins97	84.50
Magerman	84.41

Parsing results Gold standard evaluations Dependency Parsing

- Number of sentences: 700
- Discarded (multiple heads) in Parc: 8.5 %

	% correct
Yamada-Matsumoto	85.33
Collins97	84.50
Magerman	84.41
LEFT	47.63
Random	44.33
Rіght	40.70

Parsing results Gold standard evaluations Dependency Parsing

- Number of sentences: 700
- Discarded (multiple heads) in Parc: 8.5 %

	% correct
Yamada-Matsumoto	85.33
Collins97	84.50
Magerman	84.41
Left	47.63
Random	44.33
Rіght	40.70
FAMILIARITY-POStags-Spine	76.38

Parsing results Gold standard evaluations Dependency Parsing

Head gold evaluations - Tiger DB

- Number of sentences: 1866
- Discarded (multiple heads) in Tiger DB: 42.9 %

	% correct
Tiger TB Head Assignment	77.39
RIGHT	52.59
Random	38.66
Left	18.64
FAMILIARITY-POStags-Spine	68.88

Parsing results Gold standard evaluations Dependency Parsing

Constituency structure and Dependency structure

Heads can be seen as a bridge to convert constituency structures to dependency structures.

Parsing results Gold standard evaluations Dependency Parsing

Constituency structure and Dependency structure

Heads can be seen as a bridge to convert constituency structures to dependency structures.

Parsing results Gold standard evaluations Dependency Parsing

Dependency Parsing

- Corpus: Penn Wall Street Journal corpus
- Training: sec 02-11 unlab. (sentences up to length 20)
- Test: sec 22 unlab. (sentences up to length 20)
- MST (McDonald et al.) dependency parser
- Similar result with MALT (Nivre et al.)

	Self	Collins97
	UAS	UAS
Collins97	91.0	100.0
Yamada-Matsumoto	90.5	86.4
Magerman	89.7	79.2
LEFT	91.6	23.2
RIGHT	90.0	25.7
Random	20.7	22.3
FAMILIARITY-POStags-Spine	83.9	53.2

• Variations of FAMILIARITY algorithm do well in the three tasks.

Conclusions

- Variations of FAMILIARITY algorithm do well in the three tasks.
- There is no single assignment which works best in all the evaluations.

Conclusions

- Variations of FAMILIARITY algorithm do well in the three tasks.
- There is no single assignment which works best in all the evaluations.
- Evaluations of different head assignments in real NLP applications are desirable.

Conclusions

- Variations of FAMILIARITY algorithm do well in the three tasks.
- There is no single assignment which works best in all the evaluations.
- Evaluations of different head assignments in real NLP applications are desirable.
- Head assignments as a new task in NLP!

Thank you!

Extra material at:

http://staff.science.uva.nl/~fsangati {f.sangati,zuidema}@uva.nl

Stochastic LTSGs

Lexicalized Trees + substitution operation = LTSG

- Corpus + Heads \rightarrow LTSG
- LTSGs belong to the family of TSGs (as CFGs and DOP).
- As all other TSGs, LTSGs can be defined within a stochastic model.

$$F(\tau) = \frac{f(\tau)}{\sum_{\substack{\tau':r(\tau')=r(\tau)\\ r_i \in d}} f(\tau')}$$
$$P(d) = \prod_{\substack{\tau_i \in d\\ r_i \in \delta(t)}} F(\tau_i)$$
$$P(t) = \sum_{\substack{d_j \in \delta(t)\\ r_i \in d}} F(\tau_i)$$

Parc700 Original

Federico Sangati & Willem Zuidema Unsupervised Methods for Head Assignments

Parc700 Dependecy Structure

num(s-12, pi) number(S-12, nillion-21) pers(S-12, 3) adjunct_lype(n-15, nominal) obj(n-15, semantic) num(asset-16, pi) pers(asset-16, 3) adjunct(million-21, 1473-23) number_lype(nillion-21, cardinal) adjunct(million-21, cardinal) adjunct(S-25, pi) number(-25, pi) number(-25, pi) number(-25, pi) vt psp(purchase=0, main) moof(recaive=10, indicative ob)(receive=10, indicative ob)(receive=10, from=26) sub)(receive=10, pro-11) tense(receive=10, pro-11) tense(receive=10, pro-11, int) pers(pro-11, sof) pers(pro-11, sof) pers(pro-11, sof) pron_form(pro-11, pros) adjunct(§=12, in=15) adjunct(coord-0, siso-6) con](coord-0, purchase-9) cong(coord-0, purchase-9) coord_rown(coord-0, and) coord_rown(coord-0, vPauxcoord) stm_type(coord-0, declarative) adorytype(aiso-6, positive) adorytype(aiso-6, positive) ob)(purchase-9, functive) ob)(purchase-9, functive) bo)(purchase-9, functive) ob)(purchase-9, functive) ob)(purchase-9, functive) ob)(purchase-9, functive) ptp perform-26, semantic) adjunct_type(m-31, nominal) obj(in-31, semantic) num(assistance-32, sg) pers(assistance-32, sg) pers(assistance-32, sg) number_type(S50-36, cardinal) number_type(S50-36, cardinal) det_form(RTC-37, def) num(RTC-37, sg) pers(RTC-37, sg) pers(RTC-37, sg)

Parc700 Dependency Structure 2 (Tomas By)

word(2, 0, it, [index-'11', pron_type-pers, pron_form-it, pers-'3', num-sg, gend_sem-nonhuman, case-nom]).

word(2, 1, will, []).

word(2, 2, also, [index-'8', adv_ty pe-sadv, adegree-positive]).

word(2, 3, purchase, [index-'9', v ty pe-main, tense-fut, mood-indicative]).

word(2, 4, \$, [index-'12',pers-'3',num-pl]).

word(2, 5, '473', [index-'23',number_type-cardinal]).

word(2, 6, million, [index-'21',number_type-cardinal]).

word(2, 7, in, [index-'15', pty pe-semantic, adjunct_ty pe-nominal]).

word(2, 8, assets, [index-'16',pers-'3',num-pl]).

word(2, 9, ',', []).

word(2, 10, and, [index-'0',stmt_type-declarative,coord_level-'VPauxcoord',coord_form-and]).

word(2, 11, receive, [index-'10', v ty pe-main, tense-fut, mood-indicative]).

word(2, 12, \$, [index-'25',pers-'3',num-pl]).

word(2, 13, '550', [index-'36',number_type-cardinal]).

word(2, 14, million, [index-'34',number_type-cardinal]).

word(2, 15, in, [index-'31', pty pe-semantic, adjunct_ty pe-nominal]).

word(2, 16, assistance, [index-'32',pers-'3',num-sg]).

word(2, 17, from, [index-'26', pty pe-semantic]).

word(2, 18, the, []).

word(2, 19, 'RTC', [index-'37',proper-misc,pers-'3',num-sg,det_type-def,det_form-the]).

dependency (2, w(18), [det form], w(19)). dependency (2, w(1), [tense], w(3)). dependency (2, w(2), [adjunct], w(10)). dependency (2, w(3), [conj], w(10)). dependency (2, w(11), [conj], w(10)). dependency (2, w(0), [subi], w(3)). dependency (2, w(4), [obi], w(3)), dependency (2, w(0), [subj], w(11)). dependency (2, w(12), [obj], w(11)). dependency (2, w(17), [obl], w(11)), dependency (2, w(7), [adjunct], w(4)). dependency (2, w(6), [number], w(4)), dependency (2, w(8), [obi], w(7)). dependency (2, w(5), [adjunct], w(6)). dependency (2, w(15), [adjunct], w(12)). dependency (2, w(14), [number], w(12)). dependency (2, w(19), [obi], w(17)), dependency (2, w(16), [obi], w(15)), dependency (2, w(13), [adjunct], w(14)).

[It] [wili] [also] [purchase] [\$] [473] [million] [in] [assets] [,] [and] [receive] [\$] [550] [million] [in] [assistance] [from] [the] [RTC]

Parc700 Gold

Parc700 Collins97

Federico Sangati & Willem Zuidema Unsupervised Methods for Head Assignments

Parc700 Gold VS Collins97

Federico Sangati & Willem Zuidema Unsupervised Methods for Head Assignments

Parc700 Familiarity

Parc700 Familiarity POStag Spine

Parc700 Familiarity VS Familiarity POStag Spine

Parc700 Gold VS Familiarity POStag Spine

