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Converting the Penn WSJ Treebank into TDS format

Federico Sangati and Chiara Mazza.
An English Dependency Treebank à la Tesnière.
Proceedings TLT8, December 09.

• Fully automatic (49208 sentences)
• Conversion and visualization publicly available at:
staff.science.uva.nl/~fsangati/TDS
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Comparing with PS and DS
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Dependency Relations (Connexion)
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Word types
All words are divided into two classes:

• Content words: nouns, verbs, adjectives, etc.
• Functional words: aux., determiners, prepositions, etc.

e.g. Snoopy is flying on the doghouse
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Block of Words (Nucléus)

A block always includes a single content word and any number
of functional words (possibly none).

e.g. Snoopy is flying on the doghouse

Sentence levelBlockWord level

FEDERICO SANGATI A PROBABILISTIC GENERATIVE MODEL FOR TDS



OUTLINE TDS REPRESENTATION PARSING CONCLUSIONS

Categories (Catégories)
Tesnière distinguishes four block categories: nouns, adjectives,
verbs, adverbs.
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Transference (Translation)
A shifting process which makes a block change from the original
category of the content word, to another category, by means
of zero or more functional words belonging to the same block,
called transferrers.
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Junction (Jonction)

• It groups blocks, the conjuncts, into a unique block entity.
• The conjuncts are connected horizontally by means of con-

junctions (possibly missing).
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Coordination : TDS vs. PS
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TDS vs. PS: Charniak’s parserS1
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TDS vs. PS: Charniak’s parser
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A 3-steps generative model

A sentence structure is generated in three phases:

1 Generate generic blocks (top-dows, left-right) specifying cate-
gories, and functional words.
PG(SG) =

∏
B ∈ dependentBlocks(S)

P(B|parent(B), direction(B), leftSibling(B))

2 Expand generic blocks to either one standard block or several
conjunct blocks and conjunctions.
PE(SE) =

∏
B ∈ blocks(S)

P(elements(B)|derivedCat(B))

3 Fill standard blocks with words.
PF(SF) =

∏
B ∈ standardBlocks(S)

P(cw(B)|cw(parent(B)), cats(B), fw(B), context(B))

P(S) = PG(SG) · PE(SE) · PF(SF)
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Generating a sentence

Mary is singing an old and beautiful song

!"

#$
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Generating a sentence

Mary is singing an old and beautiful song

is

an

(after 4 applications of GENERATE)
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Generating a sentence

Mary is singing an old and beautiful song

is

an

and

(after 6 applications of EXPAND)
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Generating a sentence

Mary is singing an old and beautiful song

Mary

is singing

an

old beautifuland

song

(after 5 applications of FILL)

FEDERICO SANGATI A PROBABILISTIC GENERATIVE MODEL FOR TDS



OUTLINE TDS REPRESENTATION PARSING CONCLUSIONS

Parsing through Re-ranking
The Idea

• An other parser provides k-best PS candidates.
• Convert them into TDS representation.
• Compute the prob. of each candidate.
• Select the one with max. probability (re-ranking).

Motivation

• Implement and compare different settings / models.
• Without implementing different full parsers.

Federico Sangati, Willem Zuidema, and Rens Bod.
A generative re-ranking model for dependency parsing.
Proceedings IWPT 09.
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Evaluation metrics

Standard Evaluations

• F-Score (F1)

• Unlabeled Word Attachment Score (UAS)

New Proposed Evaluations

• Block Detection Score (BDS): accuracy of detecting the correct boundaries

of the blocks in the structure.

• Block Attachment Score (BAS): accuracy of detecting the correct governing

block of each block in the structure.

• Junction Detection Score (JDS) : accuracy of detecting the correct

list of conjuncts composing each junction block in the structure.
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Results
• Corpus: Penn WSJ converted to TDS.
• Training/Test: sec 02-21 / sec 22
• k-best candidates: Charniak’s Max-Ent parser.

Beam F1 UAS Blocks Detection Blocks Attach. Junctions Detection
Charniak k = 1 89.4 92.5 95.0 89.5 77.6
PCFG-reranker k = 5 89.0 92.4 95.1 89.2 77.5
PCFG-reranker k = 1000 83.5 88.4 92.9 83.6 71.8
TDS-reranker k = 5 89.6 92.4 95.0 89.4 77.7
TDS-reranker k = 10 89.0 92.1 94.7 88.9 76.5
TDS-reranker k = 100 86.6 90.4 93.7 86.6 72.1
TDS-reranker k = 1000 84.0 88.1 92.0 84.0 67.7
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PoS-Tagging & Chunking
• Previous 3 models do not take into account the linear order of words.
• Improve robustness: define PoS tagging and Chunking model.
• Both implemented as a tagging task with n-gram models (Buchholz 1999, Veenstra 1999).

Mary

is singing

an

old beautifuland

song

Words Mary is singing an old and beautiful song
PoS-tags NNP AUX VBG DT JJ CC JJ NN
Chunk tags N N I N -N C N +I

PPoS(SP) =
|sentenceLength|∏

i=1

P(word(i), pos(i)|wordi−1, posi−1, posi−2)

PChunk(SC) =
|sentenceLength|∏

i=1

P(chunk(i)|wordi, posi, posi−1, posi−2, posi+1)

P(S) = PG(SG) · PE(SE) · PF(SF) · PPoS(SP) · PChunk(SC)
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Results

• Corpus: Penn WSJ converted to TDS.

• Training/Test: sec 02-21 / sec 22

• k-best candidates: Charniak’s Max-Ent parser.

Beam F1 UAS B. Detection B. Attach. Junct. Detection
Charniak k = 1 89.4 92.5 95.0 89.5 77.6
PCFG-reranker k = 5 89.0 92.4 95.1 89.2 77.5
PCFG-reranker k = 1000 83.5 88.4 92.9 83.6 71.8
TDS-reranker k = 5 89.6 92.4 95.0 89.4 77.7
TDS-reranker + pos&chunk k = 5 89.6 92.5 95.2 89.5 77.6
TDS-reranker k = 10 89.0 92.1 94.7 88.9 76.5
TDS-reranker k = 100 86.6 90.4 93.7 86.6 72.1
TDS-reranker k = 1000 84.0 88.1 92.0 84.0 67.7
TDS-reranker + pos&chunk k = 1000 84.8 89.3 93.5 84.9 69.7
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Conclusions

• Conversion of the Penn WSJ treebank into TDS.

• Probabilistic model to parse TDS structures.

• 3 New evaluation metrics.

• Improved robustness of the system after adding PoS-tagger &
Chunker models.
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Conversion and visualization tool available at:
staff.science.uva.nl/~fsangati/TDS

f.sangati@uva.nl
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